
TENSOR PRODUCTS OF DIRECT SUMS

BOGDAN C. GRECU AND RAYMOND A. RYAN

Abstract. A similar formula to the one established by Ansemil and Floret for symmetric tensor

products of direct sums is proved for alternating and Jacobian tensor products. It is then applied

to stable spaces where a number of isomorphisms betwen spaces of tensors or multilinear forms are

unveiled. A connection between these problems and irreducible group representations is made.

Preliminaries. The n-fold tensor product of n vector spaces {Ei}n
i=1 is defined recursively as

E1 ⊗ · · · ⊗ En−1 ⊗ En = (E1 ⊗ · · · ⊗En−1)⊗ En.

Let E and F be normed spaces. A norm µ on E ⊗ F is said to be a reasonable crossnorm if
1. µ(x⊗ y) ≤ ‖x‖ ‖y‖ for every x ∈ E and y ∈ F

2. for every ϕ ∈ E∗ and ψ ∈ F ∗, the linear functional ϕ ⊗ ψ on E ⊗µ F is bounded and
‖ϕ⊗ ψ‖ ≤ ‖ϕ‖ ‖ψ‖ .

The projective and the injective norms π and ε satisfy these conditions and it can be shown that
a norm µ on E ⊗ F is a reasonable crossnorm if and only if ε(u) ≤ µ(u) ≤ π(u) for every u ∈ E ⊗ F

(see [3], [6] for details).
A uniform crossnorm is an assignment to each pair E and F of Banach spaces of a reasonable

crossnorm on E ⊗F which behaves well with respect to the formation of tensor product of operators,
in the sense that if S : E → F and T : F → Y are bounded linear operators then S⊗T : E⊗F → X⊗Y ,
defined by S ⊗ T (x⊗ y) = Sx⊗ Ty, is bounded and ‖S ⊗ T‖ ≤ ‖S‖ ‖T‖.

If for all normed spaces {Ei}n
i=1 and all k with 1 ≤ k ≤ n, the norm µ satisfies

(E1 ⊗µ · · · ⊗µ Ek)⊗µ (Ek+1 ⊗µ · · · ⊗µ En) = E1 ⊗µ · · · ⊗µ Ek ⊗µ Ek+1 ⊗µ · · · ⊗µ En

then we say that µ induces a tensor topology. The projective and the injective norms π and ε satisfy
this property. Tensors topologies are defined in the wider context of locally convex spaces, as explained
in [1].

We say that a tensor topology τ is symmetric if the mapping

x1 ⊗ · · · ⊗ xn 7→ (x1 ⊗ · · · ⊗ xn)σ = xσ(1) ⊗ · · · ⊗ xσ(n)

extended by linearity to the whole of ⊗n
τ E, is continuous for every σ in Sn, where Sn is the group

of permutations of the set {1, 2, . . . , n}. In particular, if µ is a symmetric uniform crossnorm, i.e.
µ(xσ(1) ⊗ · · · ⊗ xσ(n)) = µ(x1 ⊗ · · · ⊗ xn) for every σ in Sn, then the topology induced by µ is a
symmetric tensor topology.

A locally convex space E is stable if E is topologically isomorphic to its square E ⊕ E = E2. Dı́az
and Dineen [2], working with a stable locally convex space E, prove that there exists an isomorphism
between the spaces of continuous n-linear forms L(nE) and symmetric n-linear forms Ls(nE) (see
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also [4]). Later, Ansemil and Floret [1] deal with the predual problem. First they establish a general
formula for the symmetric n-fold tensor product of a direct sum of spaces:

⊗n
s (F1 ⊕ F2) '

n⊕

k=0

(⊗k
sF1)⊗ (⊗n−k

s F2)

and then they use it for stable spaces to show that for all tensor topologies, the full n-fold tensor
product of a stable space E is isomorphic to its symmetric n-fold tensor product.

In this note we prove similar formulas for the alternating n-fold tensor product, analyse in detail the
3-fold tensor product and deduce a formula for the Jacobian tensor product. We apply these results
to stable spaces, obtaining a number of isomorphisms. Finally we make a connection between these
problems and irreducible group representations.

1. Alternating tensors. The antisymmetrisation operator A : ⊗nE → ⊗nE is defined as

A(x1 ⊗ · · · ⊗ xn) = x1 ⊗a · · · ⊗a xn =
1
n!

∑

α∈Sn

χ(α)xα(1) ⊗ · · · ⊗ xα(n)

for elementary tensors and extended by linearity to the whole of ⊗nE, with χ(α) denoting the sign
of a permutation α. The range of A, that we denote by ⊗n

aE, is called the alternating n-fold tensor
product of E. We want to show that a similar result to that of Ansemil and Floret holds for the
alternating tensor product, that is if the vector space E is the direct sum of two subspaces F1 and F2

then

⊗n
aE '

n⊕

k=0

(⊗k
aF1)⊗ (⊗n−k

a F2).

The proof in [1], which uses the fact that the n-fold symmetric tensor product is the linear span of
the vectors ⊗nx = ⊗n

s x, with x in E, is no longer valid, since ⊗n
ax = 0 for all x.

Clearly, as k ranges from 0 to n, all of (⊗k
aF1)⊗ (⊗n−k

a F2) are subspaces of ⊗nE and their sum is
direct in ⊗nE.

The elements of (⊗k
aF1)⊗ (⊗n−k

a F2) are not alternating tensors, but can be antisymmetrised. Thus,
if x1 ⊗a x2 ⊗a · · · ⊗a xk and xk+1 ⊗a xk+2 ⊗a · · · ⊗a xn are elements of ⊗k

aF1 and ⊗n−k
a F2 respectively,

then

A((x1 ⊗a x2 ⊗a · · · ⊗a xk)⊗ (xk+1 ⊗a xk+2 ⊗a · · · ⊗a xn))

= A(
1

k!(n− k)!

∑
τ,ρ

χ(τ)χ(ρ)xτ(1) ⊗ · · · ⊗ xτ(k) ⊗ xρ(k+1) ⊗ · · · ⊗ xρ(n))

where τ ranges over Sk and ρ over the set of all permutations of {k + 1, . . . , n}. Let (τρ) be the
element of Sn defined by

(τρ)(i) =
{

τ(i), 1 ≤ i ≤ k

ρ(i), k + 1 ≤ i ≤ n
.
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It is easy to see that χ(τρ) = χ(τ)χ(ρ). Fix now τ and ρ. As σ ranges over Sn, so does σ(τρ).
Therefore

A((x1 ⊗a x2 ⊗a · · · ⊗a xk)⊗ (xk+1 ⊗a xk+2 ⊗a · · · ⊗a xn))

=
1
n!

1
k!(n− k)!

∑

σ∈Sn

∑
τ,ρ

χ(σ)χ(τρ)xσ(τρ)(1) ⊗ · · · ⊗ xσ(τρ)(k) ⊗ xσ(τρ)(k+1) ⊗ · · · ⊗ xσ(τρ)(n)

=
1

k!(n− k)!

∑
τ,ρ

1
n!

∑

α∈Sn

χ(α)xα(1) ⊗ · · · ⊗ xα(k) ⊗ xα(k+1) ⊗ · · · ⊗ xα(n)

=
1

k!(n− k)!

∑
τ,ρ

x1 ⊗a x2 ⊗a · · · ⊗a xn = x1 ⊗a x2 ⊗a · · · ⊗a xn.

Now let us try to “decompose” elementary tensors in ⊗n
aE. We use the notation of [1]:

Sk
n = {η ∈ Sn, η|{1,... ,k} and η|{k+1,... ,n} are increasing}

and

Tn = {f, f : {1, 2, . . . , n} → {1, 2}}

T k
n = {f, f ∈ Tn with card f−1(1) = k}.

If P1 and P2 are the projections of E onto F1 and F2 we can write

x1 ⊗a · · · ⊗a xn = (P1x1 + P2x1)⊗a · · · ⊗a (P1xn + P2xn)

=
∑

f∈Tn

Pf(1)x1 ⊗a · · · ⊗a Pf(n)xn

=
n∑

k=0

∑

f∈T k
n

Pf(1)x1 ⊗a · · · ⊗a Pf(n)xn.

For f in T k
n let f−1(1) = {i1, . . . , ik} with i1 ≤ i2 ≤ . . . ≤ ik and f−1(2) = {ik+1, . . . , in} with

ik+1 ≤ . . . ≤ in. Then the permutation η with η(l) = il for 1 ≤ l ≤ n is an element of Sk
n.

On the other hand, for every η in Sk
n, we can define a function f : {1, . . . , n} → {1, 2} such that

f−1(1) = {η(1), . . . , η(k)} and f−1(2) = {η(k + 1), . . . , η(n)}, so there is a one-to-one correspondence
between Sk

n and T k
n . Thus

x1 ⊗a · · · ⊗a xn =
n∑

k=0

∑

η∈Sk
n

χ(η)P1xη(1) ⊗a · · · ⊗a P1xη(k) ⊗a P2xη(k+1) ⊗a · · · ⊗a P2xη(n)

=
n∑

k=0

∑

η∈Sk
n

χ(η)A
(
(P1xη(1) ⊗a · · · ⊗a P1xη(k))⊗ (P2xη(k+1) ⊗a · · · ⊗a P2xη(n))

)

= A




n∑

k=0

∑

η∈Sk
n

χ(η)
1

k!(n− k)!

∑
τ,ρ

χ(τ)χ(ρ)P1xτη(1) ⊗ · · · ⊗ P1xτη(k) ⊗ P2xρη(k+1) ⊗ · · · ⊗ P2xρη(n)




where τ and ρ range over the set of al permutations of {η(1), . . . , η(k)} and {η(k + 1), . . . , η(n)}
respectively, for every fixed η in Sk

n. Certainly (τρ)η is an element of Sn and

χ((τρ)η) = χ(τ)χ(ρ)χ(η).
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Conversely, if σ is an element of Sn, let η be the permutation in Sk
n such that {η(1), . . . , η(k)} =

{σ(1), . . . , σ(k)} and {η(k + 1), . . . , η(n)} = {σ(k + 1), . . . , σ(n)}. If we put τ(η(l)) = σ(l) for
1 ≤ l ≤ k and ρ(η(j)) = σ(j) for k + 1 ≤ j ≤ n then τ and ρ are permutations of {η(1), . . . , η(k)} and
{η(k + 1), . . . , η(n)} respectively and σ = (τρ)η. We can then write

x1 ⊗a · · · ⊗a xn = A

(
n∑

k=0

(
n

k

)
1
n!

∑

σ∈Sn

χ(σ)P1xσ(1) ⊗ · · · ⊗ P1xσ(k) ⊗ P2xσ(k+1) ⊗ · · · ⊗ P2xσ(n)

)

= A

(
n∑

k=0

(
n

k

)
(⊗kP1)⊗ (⊗n−kP2)(x1 ⊗a · · · ⊗a xn)

)
.

Now define Qk : ⊗nE → (⊗kF1) ⊗ (⊗n−kF2) by Qk =
(
n
k

)
(⊗kP1) ⊗ (⊗n−kP2). As is easily seen from

the calculations above

Qk(x1 ⊗a · · · ⊗a xn) =
∑

η∈Sk
n

χ(η)(P1xη(1) ⊗a · · · ⊗a P1xη(k))⊗ (P2xη(k+1) ⊗a · · · ⊗a P2xη(n)),

therefore Qk maps ⊗n
aE into (⊗k

aF1)⊗ (⊗n−k
a F2). We are now ready to prove the announced result.

Theorem 1. Let E be a vector space such that E = F1 ⊕ F2. Then the linear mapping

Q : ⊗n
aE →

n⊕

k=0

(⊗k
aF1)⊗ (⊗n−k

a F2)

defined by Q(u) =
⊕n

k=0 Qk(u) for all u in ⊗n
aE is an isomorphism, its inverse being the restriction

of the antisymmetrisation operator A to
⊕n

k=0(⊗k
aF1)⊗ (⊗n−k

a F2).

Proof. Since for elementary tensors we have

x1 ⊗a · · · ⊗a xn = A

(
n∑

k=0

Qk(x1 ⊗a · · · ⊗a xn)

)
,

we obtain

u = A(Q(u))

for every u in ⊗n
aE.

To prove that QA is the identity on
⊕n

k=0(⊗k
aF1) ⊗ (⊗n−k

a F2), let wk be elements of (⊗k
aF1) ⊗

(⊗n−k
a F2). Because of the linearity, it is enough to work with elementary tensors wk. Fix l and let

wl = (x1 ⊗a · · · ⊗a xl)⊗ (xl+1 ⊗a · · · ⊗a xn). Then

Q(A(wl)) =
n∑

k=0

Qk(A(wl)) =
n∑

k=0

(
n

k

)
(⊗kP1)⊗ (⊗n−kP2)(x1 ⊗a · · · ⊗a xl ⊗a xl+1 ⊗a · · · ⊗a xn)

=
n∑

k=0

(
n

k

)
1
n!

∑

σ∈Sn

χ(σ)P1xσ(1) ⊗ · · · ⊗ P1xσ(k) ⊗ P2xσ(k+1) ⊗ · · · ⊗ P2xσ(n).

If k < l then {σ(k + 1), . . . , σ(n)} contains at least one natural number j with1 ≤ j ≤ l and thus
P1xσ(1) ⊗ · · · ⊗P1xσ(k) ⊗P2xσ(k+1) ⊗ · · · ⊗P2xσ(n) = 0 since P2xj = 0. In the same way, all the terms
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corresponding to k > l will vanish and so

Q(A(wl)) =
(

n

l

)
1
n!

∑

σ∈Sn

χ(σ)P1xσ(1) ⊗ · · · ⊗ P1xσ(l) ⊗ P2xσ(l+1) ⊗ · · · ⊗ P2xσ(n).

It is clear now that the terms of the sum will be 0 unless {σ(1), . . . , σ(l)} = {1, . . . , l} and {σ(l +
1), . . . , σ(n)} = {l + 1, . . . , n}, in which case σ = (τρ) with τ and ρ permutations of {1, . . . , l} and
{l + 1, . . . , n} respectively. Thus

Q(A(wl)) =
(

n

l

)
1
n!

∑
τ,ρ

χ(τ)χ(ρ)xτ(1) ⊗ · · · ⊗ xτ(l) ⊗ xρ(l+1) ⊗ · · · ⊗ xρ(n)

=
(

n

l

)
1
n!

(∑
τ

χ(τ)xτ(1) ⊗ · · · ⊗ xτ(l)

)
⊗

(∑
ρ

χ(ρ)xρ(l+1) ⊗ · · · ⊗ xρ(n)

)

=
(

n

l

)
1
n!

l!(n− l)!(x1 ⊗a · · · ⊗a xl)⊗ (xl+1 ⊗a · · · ⊗a xn) = wl

and so, by linearity

Q

(
A(

n∑

l=0

wl)

)
=

n∑

l=0

wl

for all wl in (⊗l
aF1)⊗ (⊗n−l

a F2) and all 0 ≤ l ≤ n, therefore Q is an isomorphism. ¤

Remark. By induction the result can be extended for a finite direct sum of subspaces:

⊗n

a
(

m⊕

j=1

Fj) =
⊕

k1+···+km=n
0≤kj≤n

m⊗

j=1

(⊗kj
a Fj).

2. Jacobian tensors. The space E⊗E is the direct sum of E⊗s E and E⊗a E, an element x⊗ y

of E ⊗ E being expressed uniquely as a sum of elements of E ⊗s E and E ⊗a E

x⊗ y = x⊗s y + x⊗a y.

When the order of the tensor product increases, more components of an elementary tensor will come
into play. When n = 3 we have to deal with a third component, J(x⊗ y ⊗ z), such that

x⊗ y ⊗ z = x⊗s y ⊗s z + x⊗a y ⊗a z + J(x⊗ y ⊗ z).

Thus

J(x⊗ y ⊗ z) =
1
3
(2x⊗ y ⊗ z − y ⊗ z ⊗ x− z ⊗ x⊗ y)

and it is easy to see that J is a projection which satisfies the identity

J(x⊗ y ⊗ z) + J(y ⊗ z ⊗ x) + J(z ⊗ x⊗ y) = 0

for which reason we call the element J(x⊗ y ⊗ z) the Jacobian component of x⊗ y ⊗ z and the space
J(⊗3E) the subspace of Jacobian tensors. We will occasionally denote J(x ⊗ y ⊗ z) by x ⊗J y ⊗J z

and J(⊗3E) by ⊗3
JE. We can then write

⊗3E = (⊗3
sE)⊕ (⊗3

aE)⊕ (⊗3
JE).
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Our goal is to find a formula for ⊗3
J(F1 ⊕ F2). Unlike the case for the symmetric and antisymmetric

tensors, if σ is a permutation of {x, y, z} there is no way of expressing the relation between x⊗J y⊗J z

and σ(x) ⊗J σ(y) ⊗J σ(z) without using other terms involving at least one more permutation. It is
then expected that we will encounter some difficulties and that the formula will not be as “uniform”
as for the symmetric or alternating case.

Let us write x1 = P1x and x2 = P2x for an element x in E. We have

x⊗J y ⊗J z = x1 ⊗J y1 ⊗J z1 +

x1 ⊗J y1 ⊗J z2 + x1 ⊗J y2 ⊗J z1 + x2 ⊗J y1 ⊗J z1 +

x1 ⊗J y2 ⊗J z2 + x2 ⊗J y1 ⊗J z2 + x2 ⊗J y2 ⊗J z1 +

x2 ⊗J y2 ⊗J z2.

Now we notice that each of the terms on the second line in the formula above is the Jacobian tensor
product of two elements of F1 and one element of F2 and, using the Jacobian formula, their sum can
be expressed as

J(x1 ⊗ y1 ⊗ z2 − z1 ⊗ x1 ⊗ y2 + x2 ⊗ y1 ⊗ z1 − y2 ⊗ z1 ⊗ x1).

Consider the projection Qa
1 : ⊗3E → (F1 ⊗ F1)⊗ F2 defined by

Qa
1(x⊗ y ⊗ z) = x1 ⊗ y1 ⊗ z2 − z1 ⊗ x1 ⊗ y2.

It is easy to see that

Qa
1(x⊗J y ⊗J z) = x1 ⊗ y1 ⊗ z2 − z1 ⊗ x1 ⊗ y2.

The same thing is true for Qb
1 : ⊗3E → (F1 ⊗ F1)⊗ F2 defined by

Qb
1(x⊗ y ⊗ z) = y1 ⊗ z1 ⊗ x2 − z1 ⊗ x1 ⊗ y2

and thus

J(x1 ⊗ y1 ⊗ z2 − z1 ⊗ x1 ⊗ y2 + x2 ⊗ y1 ⊗ z1 − y2 ⊗ z1 ⊗ x1)

= J
(
Qa

1(x⊗J y ⊗J z) + [Qb
1(x⊗J y ⊗J z)](231)

)

where (x⊗ y ⊗ z)(231) = z ⊗ x⊗ y.
In the same way, working with the projections Qa

2 and Qb
2 of ⊗3E onto F1 ⊗ (F2 ⊗ F2), defined by

Qa
2(x⊗J y ⊗J z) = x1 ⊗ y2 ⊗ z2 − y1 ⊗ z2 ⊗ x2

Qb
2(x⊗J y ⊗J z) = z1 ⊗ x2 ⊗ y2 − y1 ⊗ z2 ⊗ x2,

we obtain

x1 ⊗J y2 ⊗J z2 + x2 ⊗J y1 ⊗J z2 + x2 ⊗J y2 ⊗J z1

= J(x1 ⊗ y2 ⊗ z2 − y1 ⊗ z2 ⊗ x2 + x2 ⊗ y2 ⊗ z1 − z2 ⊗ x2 ⊗ y1)

= J
(
Qa

2(x⊗J y ⊗J z) + [Qb
2(x⊗J y ⊗J z)](312)

)

with (x⊗ y ⊗ z)(312) = y ⊗ z ⊗ x.
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Defining Q0(x⊗ y ⊗ z) = x1 ⊗ y1 ⊗ z1 and Q3(x⊗ y ⊗ z) = x2 ⊗ y2 ⊗ z2 and noticing that

Q0(x⊗J y ⊗J z) = x1 ⊗J y1 ⊗J z1

Q3(x⊗J y ⊗J z) = x2 ⊗J y2 ⊗J z2,

we have

x⊗J y ⊗J z = Q0(x⊗J y ⊗J z)

+J
(
Qa

1(x⊗J y ⊗J z) + [Qb
1(x⊗J y ⊗J z)](231)

)

+J
(
Qa

2(x⊗J y ⊗J z) + [Qb
2(x⊗J y ⊗J z)](312)

)

+Q3(x⊗J y ⊗J z).

Let Q1 = Qa
1 + (Qb

1)
(231) and Q2 = Qa

2 + (Qb
2)

(312).

Theorem 2. Let E be a vector space such that E = F1 ⊕ F2. Then the linear mapping

Q : ⊗3
JE → (⊗3

JF1)⊕ ((F1 ⊗ F1)⊗ F2)
2 ⊕ (F1 ⊗ (F2 ⊗ F2))

2 ⊕ (⊗3
JF2)

defined by Q(u) =
⊕3

k=0 Qk(u) for all u in ⊗3
JE is an isomorphism, its inverse being the restriction

of the projection J to (⊗3
JF1)⊕ ((F1 ⊗ F1)⊗ F2)

2 ⊕ (F1 ⊗ (F2 ⊗ F2))
2 ⊕ (⊗3

JF2).

Proof. Since JQ0(x ⊗J y ⊗J z) = Q0(x ⊗J y ⊗J z) and JQ3(x ⊗J y ⊗J z) = Q3(x ⊗J y ⊗J z), it
follows that

JQ(u) = u

for all u in ⊗3
JE.

It remains to show that QJ is the identity on (⊗3
JF1) ⊕ ((F1 ⊗ F1)⊗ F2)

2 ⊕ (F1 ⊗ (F2 ⊗ F2))
2 ⊕

(⊗3
JF2). Because of the linearity, it is enough to work with elementary tensors.
Pick an element w0 = x ⊗J y ⊗J z in (⊗3

JF1). Clearly Jw0 = w0 and Q0(Jw0) = w0. Since the
projection of E on F2 appears in the formulas for Q1, Q2 and Q3, we obtain Q1(Jw0) = Q2(Jw0) =
Q3(Jw0) = 0 which means that Q(Jw0) = w0.

Take now w1 = x⊗ y ⊗ z in (F1 ⊗ F1)⊗ F2. Clearly Q0(Jw1) = 0 since z1 = 0. The expressions of
Q2 and Q3 contain at least two projections on F2 and so Q2(Jw1) = Q3(Jw1) = 0. Then

Q1(J(x⊗ y ⊗ z)) = Qa
1(x⊗J y ⊗J z) + [Qb

1(x⊗J y ⊗J z)](231)

= x1 ⊗ y1 ⊗ z2 − z1 ⊗ x1 ⊗ y2 + x2 ⊗ y1 ⊗ z1 − y2 ⊗ z1 ⊗ x1

= x⊗ y ⊗ z = w1

and so Q(J(w1)) = w1.
In the same way it can be shown that Q(J(w2)) = w2 and Q(J(w3)) = w3 for all elements w2 in

F1 ⊗ (F2 ⊗ F2) and w3 in (⊗3
JF2), therefore QJ is the identity. ¤

3. Topological results. Both of the theorems proved so far state the existence of algebraic
isomorphisms. When working with a topological structure on E we would like these isomorphisms to
be topological as well.
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Suppose E is a normed space. Let us analyse first the antisymmetric tensors. The isomorphism Q

is the sum of Qk’s, where

Qk(x1 ⊗a · · · ⊗a xn) =
(

n

k

)(
(⊗kP1)⊗ (⊗n−kP2) ◦A

)
(x1 ⊗ · · · ⊗ xn)

In order for the antisymmetrisation operator A to be continuous we need to work with a norm µ on
⊗nE for which the mapping u 7→ uσ is continuous for every σ in Sn, a condition satisfied by symmetric
tensor norms. We also need the continuity of ⊗kP1 and ⊗n−kP2, so we would like tensor products of
countinuous operators to remain continuous. Thus µ should be a uniform cross-norm. Finally, we want
to be able to associate the factors of a n-fold tensor product in any way we want, therefore we require
that the norm µ induces a tensor topology. It is clear now that once these conditions are satisfied,
all of the spaces (⊗k

µ,aF1)⊗µ (⊗n−k
µ,a F2) are continuously embedded into ⊗n

µE and so the inverse of Q,
which is the restriction of A to the direct sum of these spaces, is also continuous. The same remarks
remain valid when working with locally convex spaces.

Theorem 3. Let E be a locally convex space such that E = F1 ⊕ F2. Then

⊗n
τ,aE

∼=
n⊕

k=0

(⊗k
τ,aF1)⊗τ (⊗n−k

τ,a F2)

for every symmetric tensor topology τ .

Let us apply now this result to stable spaces. Dı́az and Dineen [2] showed that the spaces of
continuous n-linear forms and symmetric continuous n-linear forms on a stable space E are isomorphic.
Using their ideas, Ansemil and Floret [1] extended this result to the predual of those two spaces,
respectively the n-fold and the symmetric n-fold tensor products endowed with the projective topology.
They also showed that the isomorphism holds for all the symmetric tensor topologies. The proof of
the next corollary follows that in [1], but we give it for the sake of completness.

Corollary 1. Let E be a stable locally convex space. Then, for all symmetric tensor topologies τ

and all positive integers n, the spaces ⊗n
τ,aE and ⊗n

τ E are isomorphic.

Proof. We are going to prove it by induction. The result is clear for n = 1 since both spaces are,
in this case, equal to E. Let us write E = F1 ⊕ F2 with both F1 and F2 isomorphic to E and denote
⊗k

τ,aE by Gk and ⊗k
τE by Hk. Assume Gk

∼= Hk for all k < n.

Since we are working with a tensor topology,

Hk = (⊗k−1
τ E)⊗ (F1 ⊕ F2) =

(
(⊗k−1

τ E)⊗ F1

)
⊕

(
(⊗k−1

τ E)⊗ F2

) ∼=
(
(⊗k−1

τ E)⊗ E
)2

= H2
k .

By the previous theorem,

Gn = ⊗n
τ,aF1 ⊕

(
⊕n−1

k=1(⊗k
τ,aF1)⊗τ (⊗n−k

τ,a F2)
)
⊕⊗n

τ,aF2

∼= G2
n ⊕

(⊕n−1
k=1Hk ⊗τ Hn−k

)
= G2

n ⊕Hn−1
n

∼= G2
n ⊕Hn.

Let V be the topological complement of Gn in Hn. Then

Hn = Gn ⊕ V ∼= G2
n ⊕Hn ⊕ V = Gn ⊕H2

n
∼= G2

n ⊕H3
n
∼= G2

n ⊕Hn
∼= Gn.

¤
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Let us denote by La(nE) the space of alternating n-linear forms, namely those forms B that satisfy

B(xσ(1), . . . , xσ(n)) = χ(σ)B(x1, . . . , xn)

for all σ in Sn, and endow it with the topology of uniform converge on bounded subsets of E. Let
us note that for a normed space E we deal with the usual “sup” norm in both La(nE) and L(nE).
When working with the projective topology π, the dual of ⊗n

π,aE is La(nE) and by duality we have
the following

Corollary 2. For a stable locally convex space E and all positive integers n, the spaces La(nE)

and L(nE) are isomorphic.

Moving on to Jacobian tensors and working with normed or locally convex spaces, it is easy to
see, by analysing the expression of the algebraic isomorphism in Theorem 2 that, in order to obtain
a topological isomorphism, the topology we work with must meet the same requirements as in the
case of the alternating tensors that we have just dealt with. In other words, we need to work with a
symmetric tensor topology, in which case the following statement holds:

Theorem 4. Let E be a locally convex space such that E = F1 ⊕ F2. Then

⊗3
τ,JE ∼= (⊗3

τ,JF1)⊕ ((F1 ⊗τ F1)⊗τ F2)
2 ⊕ (F1 ⊗τ (F2 ⊗τ F2))

2 ⊕ (⊗3
τ,JF2)

for every symmetric tensor topology τ .

If E is a stable locally convex space then so is⊗3
τE, where τ is a tensor topology. Writing E = F1⊕F2

with F1 and F2 isomorphic to E, from the preceeding corollary we obtain

⊗3
τ,JE ∼= (⊗3

τ,JE)⊕ (⊗3
τE)4 ⊕ (⊗3

τ,JE) ∼= (⊗3
τ,JE)2 ⊕⊗3

τE

and so the preceeding result and the proof of Corollary 1 give

Corollary 3. Let E be a stable locally convex space. Then, for all symmetric tensor topologies τ ,
the spaces ⊗3

τ,JE and ⊗3
τE are isomorphic.

The dual result will involve the space LJ(3E) of Jacobian 3-linear forms, namely those which satisfy

B(x, y, z) + B(y, z, x) + B(z, x, y) = 0

for all x, y, z in E, endowed with the topology of uniform converge on bounded subsets of E. Since
LJ(3E) is the dual of ⊗3

πE, by duality we obtain the next result.

Corollary 4. For a stable locally convex space E the spaces LJ(3E) and L(3E) are isomorphic.

4. Further ideas. Let E be a vector space. As has been mentioned before

E ⊗E = (E ⊗s E)⊕ (E ⊗a E).

Having a formula for both symmetric and alternating tensor products of direct sums, it has been
proved that when E is a stable locally convex space and we work with a symmetric tensor topology
both E ⊗s E and E ⊗a E are isomorphic to E ⊗E.

The same thing remains true for the 3-fold tensor product of a locally convex space E, again, the
result coming from the fact that

⊗3E = (⊗3
sE)⊕ (⊗3

aE)⊕ (⊗3
JE)

and that we have a formula for symmetric, antisymmetric and Jacobian tensor products of direct sums.
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It is interesting now to notice a connection between these facts and the irreducible representations
of the symmetric groups of different orders (see [5] for details on representations). When n = 2, the
symmetric group S2 has just two such representations, the trivial one, corresponding to symmetric
tensors and the alternating one (corresponding to alternating tensors). Moving on to n = 3, a new
irreducible representation comes into play, the standard one, corresponding to the Jacobian tensors.
Analysing the character table of S3,

S3 1 (12) (123)
trivial 1 1 1

alternating 1 −1 1
standard 2 0 −1

we see the way the correspondence is given; for instance x ⊗J y ⊗J z will contain twice the identity
x⊗ y⊗ z, none of the transpositions y⊗ x⊗ z, x⊗ z⊗ y or z⊗ y⊗ x and the negatives of the 2-cycles
y ⊗ z ⊗ x and z ⊗ x⊗ y.

Now, the greater the value of n, the more irreducible representations (in fact the number of partitions
of n) Sn will have (5 for n = 4, 7 for n = 5, 11 for n = 6, etc.) and to each such representation a
subspace of ⊗nE will be associated. Since there exist formulas for symmetric and alternating n-
tensors of direct sums for any degree n, it would be interesting to investigate whether such formulas
can be found for other types of tensors corresponding to other representations than the trivial and the
alternating one, as is the case with the standard representation when n = 3. Could these formulas
be so “uniform” so that for a stable space E, each of these subspaces of ⊗nE are isomorphic to ⊗nE

itself, as is the case for n = 2 and n = 3?
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