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Abstract. For a Banach space E with Schauder basis, we prove that the n fold symmetric

tensor product ⊗̂n
µ, sE has a Schauder basis for all symmetric uniform crossnorms µ. This

is done by modifying the square ordering on Nn and showing that the new ordering gives

tensor product bases in both ⊗̂n
µE and ⊗̂n

µ, sE.

The main purpose of this article is to prove that the n-fold symmetric tensor product of

a (real or complex) Banach space E has a Schauder basis whenever E does. The result was

stated without proof in Ryan’s thesis [11] and has been referred to in the literature, although

an implicit proof was given by Dimant and Dineen [2] for complex spaces. The existence

of a basis for the full tensor product was proved by Gelbaum and Gil de Lamadrid [7] who

also showed that the unconditionality of the basis for E does not necessarily imply the same

property for the tensor product basis. This was taken further Kwapień and Pe lczyński [8]

who treated this issue in the context of spaces of matrices and by Pisier [9] and Schütt

[12]. The dual problem, whether the monomials are a basis in the space of homogeneous

polynomials, was dealt with by Dimant in her thesis [1], as well as in two other articles,

together with Dineen [2] and Zalduendo [3]. The unconditionality (or lack thereof) of the

monomial basis was extensively analysed by Defant, Dı́az, Garcia and Maestre [4].
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1. Preliminaries. Let E and F be (real or complex) Banach spaces and let E ⊗ F be

their tensor product. A norm µ on E ⊗ F is said to be a reasonable crossnorm on E ⊗ F if

1. µ(x⊗ y) ≤ ‖x‖ ‖y‖ for every x ∈ E and y ∈ F

2. for every ϕ ∈ E∗ and ψ ∈ F ∗, the linear functional ϕ⊗ψ on E⊗µ F is bounded and

‖ϕ⊗ ψ‖ ≤ ‖ϕ‖ ‖ψ‖ .

The projective and the injective norms π and ε satisfy these conditions and it can be

shown that a norm µ on E ⊗ F is a reasonable crossnorm if and only if ε(u) ≤ µ(u) ≤ π(u)

for every u ∈ E ⊗ F (see [5], [10] for details).

A uniform crossnorm is an assignment to each pair E and F of Banach spaces of a rea-

sonable crossnorm on E ⊗ F which behaves well with respect to the formation of tensor

product of operators, in the sense that if S : E → F and T : F → Y are bounded linear

operators then S⊗T : E⊗F → X⊗Y , defined by S⊗T (x⊗ y) = Sx⊗Ty, is bounded and

‖S ⊗ T‖ ≤ ‖S‖ ‖T‖. In what follows we work with a uniform crossnorm µ and with E⊗̂µF ,

the completion of E ⊗ F in this norm.

Let N be the set of nonegative integers. A sequence {ei}i∈N is a Schauder basis for the

normed space E if every element x of E can be uniquely represented as x =
∑

i∈N xiei. If

the convergence of the series is unconditional for all x then the basis is called unconditional.

It is well known that {ei}i∈N is a Schauder basis if and only if span{ei} = E and {ei}i∈N

is a basic sequence: there exists a constant C such that ‖
∑n

i=1 aiei‖ ≤ C
∥∥∑n+p

i=1 aiei

∥∥ for

all natural numbers n, p and every set of scalars {ai}i∈N . This amounts to saying that the

projections Pn(
∑

i∈N xiei) =
∑n

i=1 xiei of E on the span of the first n basis vectors satisfy

‖Pn‖ ≤ C for all n. The smallest of such constants C is called the basis constant of {ei}i∈N .
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The linear functionals e∗k(
∑

i∈N xiei) = xk are bounded and {e∗k}k∈N is a basic sequence in

E∗.

If {ei}i∈N and {fj}j∈N are Schauder bases for E and F respectively, a natural question is:

does the space E⊗̂µF have a Schauder basis? Since µ is a reasonable crossnorm, it is clear

that span{ei ⊗ fj}(i,j)∈N×N = E⊗̂µF . The only thing needed then is an order on N×N with

respect to which {ei ⊗ fj}(i,j)∈N×N is a basic sequence.

If we arrange {ei ⊗ fj}(i,j)∈N×N in a matrix, one classical way of ordering them is the so

called diagonal ordering:

e1 ⊗ f1 → e1 ⊗ f2 e1 ⊗ f3 → e1 ⊗ f4

↙ ↗ ↙

e2 ⊗ f1 e2 ⊗ f2 e2 ⊗ f3 · · ·

↓ ↗ ↙

e3 ⊗ f1 e3 ⊗ f2

↙

e4 ⊗ f1 · · ·

Among the set of all projections we encounter the main triangle projections

Tn(u) =
∑

i+j≤n+1

aijei ⊗ fj

for u =
∑

i,j aijei ⊗ fj, a finite linear combination of tensors of the form ei ⊗ fj. Kwapień

and Pe lczyński [8] proved that for E = `p and F = `q with 1/p + 1/q ≥ 1 and the injective

norm ε, the projections Tn are unbounded, since ‖Tn‖ ≥ C(p, q) lnn. Therefore the diagonal

ordering will not give a basic sequence.
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Nevertheless, it is possible to order {ei ⊗ fj}(i,j)∈N×N in a satisfactory way. Gelbaum and

Gil de Lamadrid [7] introduced the square ordering illustrated in the diagram below

e1 ⊗ f1 → e1 ⊗ f2 e1 ⊗ f3 e1 ⊗ f4

↓ ↓ ↓

e2 ⊗ f1 ← e2 ⊗ f2 e2 ⊗ f3 e2 ⊗ f4

↓ ↓

e3 ⊗ f1 ← e3 ⊗ f2 ← e3 ⊗ f3 e3 ⊗ f4

↓

· · · ← e4 ⊗ f3 ← e4 ⊗ f4

Their proofs also work with the following slightly modified ordering in which the role of rows

and columns is reversed: e1 ⊗ f1, e2 ⊗ f1, e2 ⊗ f2, e1 ⊗ f2, e3 ⊗ f1, . . ., and to which we will

refer to as the square ordering. They proved that this ordering gives rise to a basic sequence.

Let P(i,j) be the projection on the linear span of the first (i, j) basis vectors with respect

to the square ordering on N× N. These projections are uniformly bounded; if C and D are

the basis constants for E and F , then the tensor product basis has a basis constant at most

5CD.

The square ordering can be extended recursively to tensor products of any number of

spaces, since the tensor product is associative and so E ⊗ F ⊗ G may be identified with

(E ⊗ F )⊗G.

When E = F we can consider the symmetric tensor product E⊗̂µ,sE as a subspace of the

full tensor product E⊗̂µE. In general the n-fold symmetric tensor product ⊗̂n
sE is defined
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as S(⊗̂n
E), where

S(x1 ⊗ · · · ⊗ xn) =
1

n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n),

Sn being the group of permutations of the set {1, . . . , n}. It is reasonable to expect that the

corresponding square ordering

e1 ⊗ e1

e2 ⊗s f1 → e2 ⊗ f2

e3 ⊗s f1 → e3 ⊗s f2 → e3 ⊗ f3

e4 ⊗s f1 → e4 ⊗s f2 → e4 ⊗s f3 → · · ·

will make {ei ⊗s ej}j≤i a Schauder basis for E⊗̂µ,sE. Ryan stated this in his thesis [11] but

it was not actually proved. Given the fact that the symmetric tensor product is not defined

recursively, one difficulty one might expect to encounter is how to describe this ordering in

the case of ⊗̂n
µ,sE. Therefore it seems more natural to obtain it from the ordering we already

have in the full tensor product ⊗̂n
µE, in which case one might expect that the corresponding

projections in the two spaces will be related. Let us see what happens for n = 2. For a finite

linear combination u =
∑

j≤i aijei ⊗s ej put

Π(m,n)(u) =
∑

(i,j)≤(m,n)
j≤i

aijei ⊗s ej.

We have, for example

Π(3,1)(u) =
∑

(i,j)≤(3,1)
j≤i

aijei ⊗s ej = P(3,1)u+
1

2
a31e1 ⊗ e3.

The greater the index (m,n) will be, the more terms the difference between the two projec-

tions will contain, so the more difficult will be to show that Π(m,n) are uniformly bounded.
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Nevertheless, it is hard to imagine that the ordering described above will not give a basic

sequence. In fact this has been proved, for the projective norm, via the dual space of ⊗̂n
π,sE,

for a complex Banach space E by Dimant and Dineen [2]. Our goal is to give a proof that

works for both real and complex spaces and uses only tensors.

2. A different ordering. In the sequel, for every positive integer n, we will call an

element of Nn an n-multi-index.

The reason why there was a difference between Π(3,1) and P(3,1) is that in the square

ordering, between e1 ⊗ e3 and e3 ⊗ e1 we come across other tensors: e3 ⊗ e2, e3 ⊗ e3 and

e2 ⊗ e3. We circumvent this by introducing a new ordering, under which the permutations

of the same multindex stay together.

If α is an n-multi-index, we denote by αd the multi-index obtained by arranging the

elements of α in decreasing order. If α and β are two decreasing multi-indices, we say that

α < β if α1 = maxα < β1 = max β or α1 = β1 and (α2, α3, . . . , αn) < (β2, β3, . . . , βn) .

Now if α and β are arbitrary we say that α < β if

1. αd < βd or

2. αd = βd, case in which α is a permutation of β, and the greater of the two will be the

index for which maxα = max β appears earlier. If maxα appears in the same position for

both of the multi-indices, we eliminate it and compare the remaining (n− 1)-multi-indices.
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When n = 3 the order is

(1, 1, 1) < (1, 1, 2) < (1, 2, 1) < (2, 1, 1) < (1, 2, 2) < (2, 1, 2) < (2, 2, 1)

< (2, 2, 2) < (1, 1, 3) < (1, 3, 1) < (3, 1, 1) < (1, 2, 3) < (2, 1, 3) < (1, 3, 2)

< (2, 3, 1) < (3, 1, 2) < (3, 2, 1) < (2, 2, 3) < (2, 3, 2) < (3, 2, 2) < (1, 3, 3) . . .

It is easy to check that this is a total order.

3. Main results. In what follows we will write eα = eα1 ⊗ eα2 ⊗ · · · ⊗ eαn for every

n-multi-index α. Let P n
α : ⊗̂n

µE → ⊗̂
n
µE be the projection of ⊗̂n

µE on the linear span of the

first α basis vectors with respect to the ordering of Nn defined above. For a positive integer

k, the operator e∗k ⊗ ek : E → E is defined by e∗k ⊗ ek

(∑
i∈N xiei

)
= xkek.

For a permutation σ in Sn let us put (x1 ⊗ · · · ⊗ xn)σ = xσ(1) ⊗ · · · ⊗ xσ(n) and extend it

by linearity and continuity to the whole of ⊗̂n
µE. There exist norms, called symmetric [5],

such as π and ε, for which µ(uσ) = µ(u) for all tensors u and all σ in Sn. Nevertheless, this

does not happen in general, for instance the Chevet-Saphar norms dp and gp do not have

this property (see [10] for details).

Proposition. Let E be a Banach space with Schauder basis {ei}i∈N and µ a symmet-

ric uniform crossnorm. Then the sequence {eα}α∈Nn with the ordering defined above is a

Schauder basis for ⊗̂n
µE.

Proof. Obviously span{eα}α∈Nn = ⊗̂n
µE. Therefore we need to show that {eα}α∈Nn is a

basic sequence. We will prove it by induction. Let C1 be the basis constant of {ei}i∈N.
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Let n = 2. If α = (k, k) then P 2
α = P 1

k ⊗ P 1
k and so ‖P 2

α‖ ≤ C2
1 . Now let (k, k) < α <

(k + 1, k + 1). If α = (l, k + 1) then

P 2
α = P 2

(k,k) + P 1
l ⊗ (e∗k+1 ⊗ ek+1) + (e∗k+1 ⊗ ek+1)⊗ P 1

l−1

and if α = (k + 1, l) then

P 2
α = P 2

(k,k) + P 1
l ⊗ (e∗k+1 ⊗ ek+1) + (e∗k+1 ⊗ ek+1)⊗ P 1

l .

In both cases we obtain ∥∥P 2
α

∥∥ ≤ C2
1 + 2C2

1 + 2C2
1 = 5C2

1 ,

therefore the projections are uniformly bounded and so the basis constant for ⊗̂2
µE is C2 ≤

5C2
1 .

We suppose now that the result is true for all natural numbers less than n − 1 and we

prove it for n. As above, if α = (k, k, . . . k) then P n
α = ⊗nP 1

k and so ‖P n
α ‖ ≤ Cn

1 . Now

let (k, k, . . . , k) < α < (k + 1, k + 1, . . . , k + 1) . We shall find an uniform bound for ‖P n
α ‖

moving along step by step, depending on the number of (k + 1)’s that appear in α.

Suppose that α contains only one k + 1 and that it appears in the last position. Then

α = (α1, . . . , αn−1, k + 1) and

P n
α = P n

(k,k,...,k)

+
∑

β≤(α1,...αn−1,k+1)

(e∗β1
⊗ eβ1)⊗ · · · ⊗ (e∗βn−1

⊗ eβn−1)⊗ (e∗βn
⊗ eβn).

Now, unless α1 = α2 = . . . = αn−1 = 1, there are multi-indices that contain k + 1 on one of

the (n− 1)th, . . . , 1st positions and are less than α. Consider all the multi-indices β that are

less than α and contain k + 1 on the nth position and sum the corresponding terms in the
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expression above. We obtain P n−1
(α1,...αn−1) ⊗ (e∗k+1 ⊗ ek+1). Now consider all the multi-indices

that are less than α and contain k+ 1 on the (n−1)th position. Because the ordering we are

using is total, there exists a γ in Nn−1 such that (γ1, . . . , γn−2, k + 1, γn−1) is their maximum.

Summing the corresponding terms in the expression of P n
α we obtain

(∑
(e∗β1
⊗ eβ1)⊗ · · · ⊗ (e∗k+1 ⊗ ek+1)⊗ (e∗βn

⊗ eβn)
)

(u)

=

((∑
δ≤γ

(e∗δ1 ⊗ eδ1)⊗ · · · ⊗ (e∗δn−1
⊗ eδn−1)⊗ (e∗k+1 ⊗ ek+1)

)
(uσ)

)σ−1

=
(
P n−1

γ ⊗ (e∗k+1 ⊗ ek+1)(u
σ)
)σ−1

where σ is the transposition that takes n to n− 1. Since µ(uσ) = µ(u) for all u in ⊗̂n
µE, we

have

∥∥∥∑(e∗β1
⊗ eβ1)⊗ · · · ⊗ (e∗k+1 ⊗ ek+1)⊗ (e∗βn

⊗ eβn)
∥∥∥ =

∥∥P n−1
γ ⊗ (e∗k+1 ⊗ ek+1)

∥∥ ≤ Cn−1(2C1)

with Cn−1 the basis constant for ⊗̂n−1
E. Repeating the same procedure n − 2 more times

we obtain

‖P n
α ‖ ≤ Cn

1 + nCn−1(2C1).

It is clear now that the same argument can be applied to all multi-indices that contain only

one k + 1 in any position, not necessarily the last.

The same technique can be used for all α that contain l entries equal to k + 1, where

1 ≤ l ≤ n−1. There are
(

n
l

)
possibilities to place those (k+ 1)’s among the n entries of α. If

we fix one of these
(

n
l

)
arrangements and we sum the corresponding terms, we obtain, for an

(n− l)-multi-index γ, the operator
(
P n−l

γ ⊗ (e∗k+1 ⊗ ek+1)
l
)σ−1

with σ the permutation that

takes the positions where the (k + 1)’s appear in α to (n− l + 1, . . . , n). The norm of each
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of these operators is bounded by Cn−l(2C1)
l. To obtain an upper bound for ‖P n

α ‖ we have

to keep in mind that all the n multi-indices that contain strictly less than l entries equal to

k + 1 are less than α. Therefore

‖P n
α ‖ ≤ Cn

1 + nCn−1(2C1) + · · ·+
(

n

l − 1

)
Cn−l+1(2C1)

l−1 +

(
n

l

)
Cn−l(2C1)

l.

Continuing in the same manner until l = n− 1, we get

‖P n
α ‖ ≤

n−1∑
l=0

(
n

l

)
Cn−l(2C1)

l

for all (k, k, . . . , k) < α < (k + 1, k + 1, . . . , k + 1) and for all k, which shows that {P n
α }α∈Nn

is uniformly bounded and thus the sequence {eα}α∈Nn with the ordering defined above is a

basic sequence, therefore a Schauder basis for ⊗̂n
µE. �

Remark 1. The bound also shows that Cn ≤
∑n−1

l=0

(
n
l

)
Cn−l(2C1)

l and so Cn is a constant

of the order of (C1)
n.

Let us denote by Nn
d the set of decreasing n-multi-indices: {α ∈ Nn : α1 ≥ α2 ≥ . . . αn}.

Note that the restriction to Nn
d of the ordering we are working with is the same as the square

ordering for Nn
d , as explained in [6]. For an α in Nn

d , let Πn
α : ⊗̂n

µ,sE → ⊗̂
n
µ,sE be the projection

of ⊗̂n
µ,sE on the linear span of the first α basis vectors with respect to the ordering of Nn

d in

question.

Theorem. Let E be a Banach space with Schauder basis {ei}i∈N and µ a symmetric

uniform crossnorm. Then the sequence {eα1⊗seα2⊗s · · ·⊗seαn}α∈Nn
d

with the square ordering

is a Schauder basis for ⊗̂n
µ,sE.
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Proof. As in the previous proposition, it suffices to show that {eα1⊗s eα2⊗s · · ·⊗s eαn}α∈Nn
d

is a basic sequence, that is there exists a positive constant C such that µ(Πn
αu) ≤ Cµ(Πn

βu)

for every α ≤ β in Nn
d and u in ⊗̂n

µ,sE.

Fix two decreasing multindices α and β with α ≤ β. It is enough to prove the above

inequality for tensors u that are finite linear combinations in ⊗̂n
µ,sE of terms corresponding

to indices no greater than β, in which case Πn
βu = u. We have

Πn
αu =

∑
γ∈Nn

d
γ≤α

uγ1...γneγ1 ⊗s · · · ⊗s eγn

=
∑
γ∈Nn

d
γ≤α

∑
σ∈Sn

1

n!
uγ1...γneγσ(1)

⊗ · · · ⊗ eγσ(n)
.

For γ ≤ α and σ ∈ Sn, we have, by the definition of our ordering on Nn,
(
γσ(1), γσ(2), . . . , γσ(n)

)
≤

(γ1, γ2, . . . , γn) ≤ α. On the other hand, if δ is a multi-index in Nn and δ ≤ α then

δd ≤ αd = α. Let τ be the permutation that takes δd to δ. Then eδ = eδ1 ⊗ · · · ⊗ eδn =

e(δd)τ(1)
⊗ · · · ⊗ e(δd)τ(n)

and so all the terms less than α of which u is a linear combination in

⊗n
µE appear in the above sum. Therefore

Πn
αu = P n

αu

and

µ(Πn
αu) = µ(P n

αu) ≤ Cnµ(u) = Cnµ(Πn
βu)

which shows that {eα1 ⊗s eα2 ⊗s · · · ⊗s eαn}α∈Nn
d

is a basic sequence with basis constant no

greater that Cn, the basis constant for ⊗̂n
µE. �
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In the case when µ = π, the projective norm, we have
(
⊗̂n

πE
)∗

= Ls(
nE), the space of

symmetric n-linear forms on E with the usual sup norm. By the polarization formula [6],

Ls(
nE) is isomorphic to P(nE), the space of n-homogeneous polynomials on E with the sup

norm. For an α in Nn
d , the functional (eα1 ⊗s eα2 ⊗s · · · ⊗s eαn)∗ belongs to Ls(

nE) and

(eα1 ⊗s eα2 ⊗s · · · ⊗s eαn)∗(x1, . . . , xn) = (eα1 ⊗s eα2 ⊗s · · · ⊗s eαn)∗(x1 ⊗s · · · ⊗s xn)

= n!(e∗α1
⊗s e

∗
α2
⊗s · · · ⊗s e

∗
αn

)(x1 ⊗s · · · ⊗s xn).

Thus the sequence {e∗α1
⊗s e

∗
α2
⊗s · · · ⊗s e

∗
αn
}α∈Nn

d
is a basic sequence in Ls(

nE), and so is

{xα}α∈Nn
d
, with xα = xα1xα2 · · ·xαn , in P(nE). The polynomials xα are called the monomials

of degree n. Therefore the monomials will form a basis for their closed linear span. If n = 1

then this closed linear span is the whole of P(1E) = E∗ if and only if the basis {ei}i∈N is

shrinking, in which case the closed linear span of the monomials of degree n is Pw(nE), the

space of n-homogeneous polynomials that are weakly continuous on bounded sets. Thus we

have the following

Corollary. If the (real or complex) Banach space E has a shrinking Schauder basis then

the monomials of degree n with the square ordering of Nn
d form a Schauder basis for Pw(nE).

For complex spaces E this result has been proved, in a different way, by Dimant and Dineen

[2]. We note than the corollary and the theorem (for the projective norm) are equivalent,

due to the duality between the bases {eα1 ⊗s eα2 ⊗s · · · ⊗s eαn}α∈Nn
d

and {n!e∗α1
⊗s e

∗
α2
⊗s

· · · ⊗s e
∗
αn
}α∈Nn

d
.
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Remark 2. The antisymmetrization operator A : ⊗nE → ⊗nE is defined by

A(x1 ⊗ · · · ⊗ xn) =
1

n!

∑
σ∈Sn

sgn(σ)xσ(1) ⊗ · · · ⊗ xσ(n).

The range of A is called the space of alternating tensors ⊗n
aE = A (⊗nE). We write

x1 ⊗a · · · ⊗a xn = A(x1 ⊗ · · · ⊗ xn).

Restricting the order defined in section 2 to the set Nn
sd = {α ∈ Nn : α1 > α2 > . . . >

αn}, and copying word for word the proof of the theorem, we obtain that the sequence

{eα1 ⊗a eα2 ⊗a · · · ⊗a eαn}α∈Nn
sd

is a Schauder basis for ⊗̂n
µ,aE.

Remark 3. In the case of the basis {ei}i∈N being unconditional, a natural question

seems to be: will the bases {eα}α∈Nn or {eα1 ⊗s eα2 ⊗s · · · ⊗s eαn}α∈Nn
d

be unconditional?

It turns out that this is a very strong request. If the basis {eα}α∈Nn were unconditional

then the main triangle projections would be bounded, which, as we have seen [8], is not

true even for “nice” spaces like certain `p’s. Kwapień and Pe lczyński also showed that for

`2 ⊗ `2, considered as a space of matrices whose entries are the coordinates of the elements

of `2 ⊗ `2 relative to the basis {e(i,j)}(i,j)∈N2 , endowed with a unitary matrix norm, the basis

is unconditional if and only if the norm in question is equivalent to the Hilbertian norm on

`2⊗`2. Working for tensors product of two spaces E⊗F with a uniform crossnorm, Pisier [9]

and Schütt [12] obtained independently that the tensor product basis is unconditional if and

only if E⊗̂µF has the Gordon-Lewis property. Their results have been extended to n-fold

symmetric and full tensor products by Defant, Dı́az, Garcia and Maestre [4]. Considering

the dual problem, that is the spaces Pw(nE) and P(nE) having unconditional basis, they
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narrowed down considerably the list of candidates E with this property, showing that it

does not happen for any Banach space that contains uniformly complemented one of the

sequences (`np )n∈N with 1 < p ≤ ∞. Dineen [6] conjectures that the answer is going to be

affirmative “rarely and perhaps never”.
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[8] S. Kwapień, A. Pe lczyński, The main triangle projection in matrix spaces and its applications, Studia

Math. 34 (1970), 43-68.



SCHAUDER BASES FOR SYMMETRIC TENSOR PRODUCTS 15

[9] G. Pisier, Some result on Banach spaces without unconditional structure, Compositio Math. 37 (1978),

3-19.

[10] R. A. Ryan, “Introduction to Tensor Products of Banach Spaces”, Springer Monographs in Mathematics,

Springer-Verlag, London (2001).

[11] R. A. Ryan, Application of Topological Tensor Products to Infinite Dimensional Holomorphy, doctoral

thesis, Trinity College Dublin (1980).
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